
www.manaraa.com

1

Performance Evaluation of Active Database Management
Systems Using the BEAST Benchmark

Andreas Geppert Mikael Berndtsson Daniel Lieuwen Jürgen Zimmermann
University of Zurich1 University of Skövde Lucent Technologies/ University of Darmstadt

Bell Labs Innovations

Email: geppert@ifi.unizh.ch, spiff@ida.his.se, lieuwen@allegra.att.com, zim@dvs1.informatik.th-darmstadt.de

Technical Report 96.01
Department of Computer Science

University of Zurich
February 1996

Abstract
This paper presents the first comparative performance study of object-oriented active data-
base management systems by using the BEAST benchmark. BEAST stresses the perfor-
mance-critical components of active systems: event detection, event composition, rule
retrieval, and rule firing. For event detection both method invocation events and transaction-
al events are taken into account; this also shows some performance contributions of the pas-
sive part of an ADBMS. Four systems, namely ACOOD, Ode, REACH, and SAMOS, have
passed the benchmark tests of BEAST. The interpretation of the performance measurements
shows several achievements in the area of active database technology, but also indicates
tradeoffs (e.g. between performance and functionality). Finally, it helps to identify possible
optimizations and open issues in designing and implementing active database systems.

Keywords: active database systems, database benchmarks

1 Introduction

In recent years, active database management systems (ADBMSs) [e.g., 28, 6] have become a

hot topic of database research, and restricted ADBMS-functionality is already offered by some

commercial systems [e.g., 24, 25]. An ADBMS implements “reactive behavior” since it is able

to detect situations in the database and beyond and to perform corresponding actions specified

by the user and/or DB-administrator. Applications using reactive behavior do not require “poll-

ing” techniques in order to detect relevant situations. Additionally, an ADBMS covers more

application semantics than a passive DBMS because the implementation of situation detection

and subsequent reactions is migrated from the application programs into the ADBMS.

As for any system, ADBMSs should implement their functionalityefficiently. Indeed, per-

formance issues have recently been considered as one of the most important topics to be ad-

dressed to meet the requirements of applications and potential users [27]. Furthermore,

performance aspects also play a crucial role from a system point of view:

1. Contact author’s address: Institut für Informatik, Universität Zürich, Winterthurerstr. 190, CH-8057 Zurich,
Switzerland. Fax: +41-1-363 0035

www.manaraa.com

2

• ADBMS researchers have developed different techniques for the ADBMS tasks such as

composite event detection [e.g., 9, 15, 19]; thus, it is interesting to compare the perfor-

mance of these approaches.

• Different architectural approaches have been developed and need to be compared. For in-

stance, in the past there were intense discussions about the advantages of integrated archi-

tectures and the restrictions of layered architectures [7].

As for now, figures describing the performance even of single ADBMSs are only scarcely

available [16, 22]. In [16] a first approach was made to specify a benchmark for ADBMSs, and

[29] gives an overview about the requirements a benchmark for ADBMSs must fulfill.

In this paper we describe the application of the BEAST benchmark [16] (BEnchmark for

Active databaseSysTems) to four object-oriented ADBMSs (ACOOD [3], Ode [1], REACH

[7], and SAMOS [14]). We interpret the benchmark results obtained for each system and make

some general conclusions. The interpretations not only show several achievements in recent

ADBMS-research but also illustrate performance drawbacks and open problems with respect

to performance. Moreover, BEAST verifies some assumptions made elsewhere on the perfor-

mance of ADBMSs, while rejecting others.

BEAST focusses on basic ADBMS-tasks such as event detection, rule retrieval, and rule ex-

ecution. BEAST is intended for primarily testing the active functionality of DBMSs, since ap-

propriate benchmarks for passive DBMSs have already been developed [e.g., 8, 18].

Furthermore, we concentrate onobject-oriented ADBMSs, since — although we focus on the

active part — the underlying data model has some influence on ADBMS performance.

The next section gives a short introduction of ADBMSs and the tested systems. Section 3

describes the benchmark, and section 4 presents the results. Section 5 concludes the paper.

2 Active Database Management Systems

In this section, we give a short introduction of ADBMSs. Details can be found in [28]. We then

briefly describe the most important features of the systems tested with the BEAST benchmark.

2.1 Overview

An ADBMS is a DBMS that supports the specification and implementation of reactive behav-

ior in addition to standard database functionality. Most ADBMSs support event-condition-ac-

tion rules (ECA-rules) [11] for defining reactive behavior. An event is either an explicitly

specified point in time or a description of a “happening of interest” to the user (that is detect-

able by the database system). After an event is detected, the corresponding rule will be fired.

Events can be eitherprimitive (e.g., a method invocation, a transaction begin or commit, a time

www.manaraa.com

3

event, an abstract event2) or composite (e.g., conjunction, sequence, disjunction, negation, re-

peated occurrence). The condition is either a boolean function or a database query. If the con-

dition evaluates to true (or returns a non-empty result), the action is executed. An action is

typically written in the data manipulation language (DML) of the ADBMS.

Theexecution model of an ADBMS determines how condition evaluations and action exe-

cutions are performed in terms of the transaction model. Thecoupling modes of a rule specify

when the condition and action parts of a rule are executed with respect to the transaction that

triggered the event. Typical coupling modes areimmediate (directly after the event has been

detected),deferred (at the end of the triggering transaction, but before commit), ordecoupled

(in a separate, independent transaction). We assume that the coupling modes for conditions re-

late condition evaluation to the triggering event, and that the coupling modes for actions relate

action execution to condition evaluation. Finally, the execution model also defines how to pro-

cess multiple rules that are triggered by the same event. One possibility is to let the user speci-

fy (partial) orders, e.g., by means ofrule priorities.

2.2 The Tested Prototypes

We have tested four ADBMS prototypes whose major features are briefly described below:

• ACOOD [3, 12] is built on top of the commercial OODBMS ONTOS DB 3.0,

• Ode [1, 23] exists in two variants: a disk-based version built on EOS [4] and a main-mem-

ory version built on Dali [20] (the disk-based one was benchmarked),

• REACH [7, 5] is built with the Texas Instruments’ Open OODB [26] Release 0.2.1a, and

• SAMOS [14, 17] uses the commercial OODBMS ObjectStore as a platform.

All the systems support method events. All except REACH also support abstract events and

only ACOOD does not offer transaction events. The systems support different sets of compos-

ite event constructors, however those required for the BEAST tests can be expressed in the rule

definition language of each system. The systems use four different techniques for composite

event detection: arrays (ACOOD, [12]), extended finite state machines (Ode, [19, 23]), syntax

trees (REACH), and Petri Nets (SAMOS, [15]). The provided consumption modes [9] are

chronicle (Ode, REACH, SAMOS) andrecent (ACOOD, REACH).

Conditions in ACOOD are expressed as ONTOS SQL queries while REACH and SAMOS

allow arbitrary boolean functions as conditions. In Odemasks can be defined, which are condi-

tions that must be evaluated to determine if a (sub)event of an event has occured or not. Trig-

gers must be activated to have any effect. There can be many activations per trigger.

2. Abstract events are events that are not detected by the ADBMS, but that have to be signalled explicitly by the
application or the user.

www.manaraa.com

4

Actions in each of the systems are arbitrary statements in the underlying database program-

ming language (C++, except in Ode which is based on the C++-extension O++). REACH and

SAMOS can pass event parameters to conditions and rules; in Ode parameters used in masks/

actions are passed to the associated trigger at activation time.

Each of the systems implements further functionality that is irrelevant for BEAST.

3 BEAST: A Benchmark for ADBMSs

In this section, we first identify design decisions for the BEAST benchmark (see [21] for how

to design a benchmark). We then describe BEAST in detail.

Style of tests.The intention of BEAST is to test the basic functionality of ADBMSs and to de-

termine performance drawbacks of ADBMS-designs and -implementations. It doesnot pro-

pose a typical application and test the performance of ADBMSs for such an application (after

all, what is the “typical” application of an ADBMS?). We are thus measuring the performance

of ADBMSs on a micro level from a designer’s perspective.

Influence of passive components.ADBMSs use the functionality of passive DBMSs. They

need services from the passive part, such as persistence, transactions, and maybe query pro-

cessing. BEAST thus tests the entire active DBMS, and the performance of passive parts typi-

cally will influence ADBMS-performance. We do not test ADBMSs at a finer-grained level

(e.g. by turning off locking/logging) because the required functionality is not available in all

systems. Consequently, an ADBMS that uses a slow platform or does not exploit the capabili-

ties of the underlying system in an optimal way will incur a performance penalty. As the vari-

ous measures nevertheless have shown, BEAST makes it possible to identify performance

bottlenecks of the active part by comparing the different tests performed for a specific system.

Selection of metrics.Our major metric is CPU-time. BEAST tests invoke active behavior,

which always performs several phases such as rule execution. CPU-time is then defined as the

time interval that an operating system process spends to detect events and execute rules (excep-

tions to this definition are necessary for coupling modes other than immediate; see below).

3.1 Benchmark Design

BEAST is based on the 007 benchmark [8]. It uses the schema of 007 as well as the corre-

sponding databases (i.e., programs to create and fill databases). One reason for reusing parts of

007 is to easily obtain a schema and database. Moreover, for a given object-oriented ADBMS,

BEAST and 007 together measure the performance of both the active and the passive parts of a

system, respectively.

www.manaraa.com

5

BEAST considers three components where performance is crucial:

• event detection,

• rule management, and

• rule execution.

We have selected these components since they implement the three phases that comprise active

behavior (see Fig. 1). They are thus contained in most ADBMS-architectures [e.g., 7, 9, 17].

After an event occurs, it must bedetected, i.e., ADBMS components must recognize (or be

notified) that the event has happened. At the end of the event detection phase, the event issig-

nalled.3 The second phase (rule management) starts as soon as the event has been signalled and

determines whether (and which) rules must be executed. Internal information that links event

descriptions with rule definitions must be taken into account. In the simple case ofimmediate

coupling, rule management is directly followed by the rule execution phase (starting at t3 in

Fig. 1). In this phase, the triggered rules are executed. Thus, performance measurements of an

ADBMS must consider each of the three phases discussed above.

Event detection is realized by the components that recognize the occurrence of specific

events of interest. Two subtasks of event detection affect performance: detection of primitive

and composite events. Primitive event detection and event composition can be implemented in

several ways that may have different performance characteristics (see section 2.2).

Another task in this respect ismanagement of event occurrences. If an ADBMS can com-

pose events out of components that have occurred within different transactions, then the com-

ponent occurrences must be made persistent at least until they have been consumed for

composite events. Thus, the ADBMS must manage persistent component occurrences effi-

ciently, and the retrieval of these components upon event composition is performance critical.

Rule management also influences the performance of an ADBMS. Some systems store

event descriptions and rule definitions as objects in the database. Since these systems must re-

trieve information on rules after the signalling of an event, efficient identification and retrieval

of corresponding rules is crucial for performance. Second, it is interesting to compare the per-

formance of such systems with others that compile rules hard-wired into classes.

3. In general the precise point in time when an event occurred is not known. However, in the BEAST tests, we en-
force event occurrence and thus know this point in time.

event occurrence

event detection

event signalling

rule management rule execution

t1 t2 t3 t4

Figure 1. Phases of Active Behavior

rules retrieved rules executed

www.manaraa.com

6

Rule execution refers to the identification of condition and action parts that have to be exe-

cuted after event occurrences as well as the execution of these parts. In particular, it is interest-

ing how efficiently the various coupling modes are implemented and how efficiently multiple

rules triggered by the same event can be executed.

BEAST defines several tests for each component. Thus, the result of running BEAST is a

collection of figures instead of a single figure for each ADBMS (much like OO7). Note that we

cannot test the performance of each component directly, due to lacking access to internal inter-

faces of an ADBMS. Therefore, most BEAST tests specify one or more rules that are triggered

when executing the test, i.e., the test actually causes the event occurrence. In order to stress the

performance of single phases, we keep all other phases as small as possible. For instance, a

rule testing the performance of event detection simply defines the condition to befalse , so

that condition evaluation is cheap and no action is executed. Additionally there is only one rule

triggered by such an event in order to minimize the overhead of rule management.

We elaborate on each group of tests subsequently. We describe each test and show the corre-

sponding rule(s) in pseudo-code. Note that the tests are not always enumerated consecutively,

since some of the ones originally proposed [16] have been omitted in this paper (e.g., because

some of the tested systems do not support the functionality required by these tests).

3.1.1 Tests for Event Detection
Event detection tests focus on the time it takes to detect primitive or composite events.

3.1.1.1 Tests for Primitive Event Detection

Two of the BEAST tests refer to primitive detection (Fig. 2):

1. detection of method invocation (ED-02),

2. detection of transaction events (ED-03).

RULE ED-02
ON before AtomicPart->DoNothing // method event
IF false
DO ...

Rule ED-03
ON before commit(ED03_TX) // commit event
IF false
DO ...

Figure 2: Rules for primitive event detection tests

We illustrate the execution of tests with the test ED-02. First, the actual time is obtained, and

then the event is forced to occur multiple times (in this case, a method is invoked). Note that in

this way we know the point in time of event occurrence. The ADBMS subsequently detects the

www.manaraa.com

7

event, determines attached rules, and executes them. It then returns control to the test program.

Finally, the test program again records the time and computes the consumed CPU time.

The tests ED-02 and ED-03 measure detection of single events. The corresponding rules for

all tests have a false condition and an empty action in order to restrict the measured time to

event detection, as far as possible. Coupling modes for actions and conditions areimmediate .

Another possible kind of primitive event would betime events; however, there is no way to

measure the cost of detecting such events unless, at a minimum, one has access to the database

internals and can modify them.

3.1.1.2 Tests for Composite Event Detection

Composite event detection typically starts after a (primitive or other composite) event has been

detected. The event detector then checks whether the detected event participates in a composite

event. This is generally done in a stepwise manner, e.g., by means of syntax trees [9], automata

[19], or Petri nets [15]. Of course, the different approaches may have different performance

characteristics and therefore need to be compared with respect to efficiency. This is accom-

plished through tests ED-06 through ED-11 (Fig. 3).

In order to stress the time needed for composite event detection, we use abstract events in

the definitions of composite events wherever possible. Using abstract events enables more ac-

curate measurements, since only the time for event signalling is required and primitive event

detection is not necessary. In order to measure the entire event composition, the tests raise the

component events directly one after the other.

BEAST contains six tests for the detection of composite events:

1. detection of a sequence of primitive events (ED-06)

2. detection of the non-occurrence of an event within a transaction (negative event, ED-07),

3. detection of the repeated occurrence of a primitive event (ED-08),

4. detection of a sequence of events that are in turn composite (ED-09),

5. detection of a conjunction of method events occurring for the same object (ED-10),

6. detection of a conjunction of events raised within the same transaction (ED-11).

Since we are interested in the time for event detection, conditions, actions, and coupling modes

are kept as simple as possible. These are parts are equivalent to those in Fig. 2 and are thus om-

mitted in Fig. 3. Tests ED-06 through ED-08 measure event detection for common composite

event constructors. Test ED-09 considers one specific constructor applied to events that are in

turn composite. Finally, ED-10 and ED-11 measure the performance of event detection when

the events of interest are restricted by event parameters.

www.manaraa.com

8

RULE ED-06
ON EvED-061 ; EvED-062 // composite event: sequence

RULE ED-07 // negative event within a named transaction
ON ! EvED-07 within [begin(ED07_TX), commit(ED07_TX)]

RULE ED-08
ON times (EvED-081, 10) // EvED-081 occurs ten times

RULE ED-09 // times event, then a disjunction, then abstract event
ON times (EvED-091, 3) ; (EvED-092 | EvED-093) ; EvED-094

RULE ED-10 // sequence of method events with identical receivers
ON Module->DoNothing ; Module->setDate : same object

RULE ED-11 // conjunction of method events occuring in same trans.
ON AtomicPart->setX & AtomicPart->setY : same transaction

Figure 3: Rules for composite event detection tests

3.1.2 Tests for Rule Management
The second group of tests considersrule management. It is based on the observation that an

ADBMS has to store and retrieve the definition and implementation of rules, be it in the data-

base, as external code linked to the code of the ADBMS, or as interpreted code. Apparently,

the time it takes to retrieve rules influences ADBMS performance. Rule management tests

measure rule retrieval time, but they do not considerrule definition andrule storage. These ser-

vices are executed rather seldomly, and thus their efficient implementation is less important.

The test RM-1 (Fig. 4) raises an abstract event, evaluates a condition tofalse , and there-

fore does not execute any action. The three parts are kept such simple in order to restrict the

measured time to the rule retrieval time as far as possible.

The second test specified for rule retrieval does not specify an ECA-rule. Instead, the pur-

pose of this test is to retrieve information on event definitions and associated rules from the

rule catalog using the ADBMS’s query language (provided that this kind of retrieval is sup-

ported at all). If the ADBMS stores information on events and rules in the database, then this

test helps finding out how much time the ADBMS needs for rule retrieval at runtime. In test

RM-02 an event description is retrieved based on its identifier and subsequently all rules asso-

ciated with this event description are retrieved as well.

RULE RM-01
ON EvRM-01 // abstract event
IF false
DO ...

Figure 4: Test for rule management

www.manaraa.com

9

3.1.3 Tests for Rule Execution
The tests for rule execution are separated into two groups: one for the execution of single rules,

and one for the execution of multiple rules. The first group of tests (RE-01 through RE-03) de-

termines how quickly rules can be executed. The execution of a single rule consists of loading

the code for conditions and actions and of processing or interpreting these code fragments. Dif-

ferent approaches for linking and processing condition and action parts can be compared by

means of the tests in this group. Different strategies can also be applied for executing multiple

rules all triggered by the same event (e.g., sequential or concurrent execution). The perfor-

mance characteristics of these approaches are tested by the second subgroup.

For the execution of single rules, we consider three rules with different coupling modes. An

abstract event is used, the condition is always true, and the action is aprint command in rules

RE-01, -02, and -03. The coupling mode of the condition is alwaysimmediate . The coupling

modes of the actions areimmediate (RE-01),deferred (RE-02), anddecoupled (RE-03).

The intention of these tests is to measure the overhead needed for storing the fact that the ac-

tion still needs to be executed at the end of the transaction (deferred), as well as the overhead

necessary to start a new transaction in thedecoupled mode. In order to stress these aspects of

rule execution, we use an abstract event in order to avoid event detection, and use a simple

true condition and a simple action. Note that the performance of condition evaluation and ac-

tion execution is not of interest, because it is determined by the “passive” part of the DBMS.

The test RE-04 (Fig. 5) considers four rules all triggered by the same event. Conditions and

actions are more complex than in the previous tests, in order to observe the effects of optimiz-

ing the condition evaluation and of concurrency. All RE-04 rules have the same condition.

Hence, an ADBMS that recognizes equality of conditions (e.g., if it is able to optimize sets of

conditions) will perform better than a non-optimizing ADBMS. All rules have the coupling

modes(immediate, immediate) . No ordering is defined for the four rules. An ADBMS that

is able to process conditions and actions in parallel or at least concurrently will thus perform

better in this test.

RULE RE-04a
ON Document->DoNothing // method event
IF oid->searchString(“I am”) > 0 // oid is the receiver
DO print(“Document contains ‘I am’”);

RULE RE-04b ... //event and condition as in RE-04a
DO oid->setAuthor();

RULE RE-04c ... //event and condition as in RE-04a
DO oid->setDate();

www.manaraa.com

10

RULE RE-04d ... //event and condition as in RE-04a
DO oid->replaceText(“I am”,“This is”);

Figure 5: Rules for rule execution tests

3.2 Factors and Modes

A crucial step when designing a benchmark is the proper identification offactors [21], i.e., pa-

rameters that influence performance measurements. Several parameters of a database can have

an impact on the performance of an ADBMS. In addition to the database parameters relevant

for benchmarking a passive DBMS (e.g., buffer size, page size, number of instances stored in

the database), these include:

• the number of defined events,

• the number of defined rules,

• the number of initial components raised for composite events.

In the ideal case, the time to detect events is constant, i.e., independent of the number of de-

fined events. However, especially for composite events, it may be the case that the event detec-

tion process for single events slows down as more events are added to the system. Furthermore,

an ADBMS needs to store and retrieve internal information on event definitions during (or af-

ter) event detection. Apparently, a large number of event definitions can increase the time

needed to retrieve event information. It is thus interesting to investigate how large CPU-times

are when the number of events increases. This number is therefore included as a factor. In gen-

eral, about 50% of the events are defined as composite events.

Furthermore, the total number of rules defined by a concrete database is relevant for perfor-

mance. Recall that rule information has to be retrieved before rule execution. While a small

number of rules can be entirely loaded into main memory without problems when the ADBMS

starts execution, this is no longer possible if the rulebase is large. In the latter case, rules must

be selectively loaded upon rule execution. It is therefore an important question how efficiently

an ADBMS can handle large sets of rules, and how the system behaves when the number of

rules grows larger.

Ultimately, the performance of composite event detectors can depend on the previous event

history. Specifically, we expect that the performance of event composition depends on the

number of events that are candidate components for composite event detection. For the tests

ED-06 and ED-09 through ED-11, the number of component events which are used to initial-

ize the composite event detector is thus a parameter.

For the three factors, we choose four possible values for an empty, a small, a medium, and a

large (dummy-) rulebase (see Table 1). Tests for larger rulebases are simple to produce, since

the values of all factors can be specified as parameters of the rulebase creation program. Many

www.manaraa.com

11

rules and events will actually not be used by the benchmark, i.e., their execution is not mea-

sured. However, they are important in order to increase the load of the ADBMS as well as the

data/rulebase size. These “dummies” therefore indicate whether the ADBMS is able to handle

large sets of rules with a performance comparable to small numbers of rules.

4 Benchmark Results

In this section, we present the results obtained by running BEAST on each of the four systems.

In order to run the benchmark for a concrete ADBMS, the 007 schema must be defined for

the tested system and OO7 databases must be created. The next step consists of specifying and

compiling the ECA-rules for the system. In the final step, the desired tests are executed. Each

system has been tested with several dozens of test iterations. In each iteration, each test was

run once; in each test, the corresponding rule(s) was (were) triggered ten times.

Each test computes the CPU-time the operating system process has spent for the test execu-

tion (due to the fact that this process is subject to operating system scheduling, process-specific

CPU-time can be a fraction of the total elapsed time). All the results are given in milliseconds

(ms). In order to not flood the text with numbers, we only give average CPU-times and refer to

standard deviations only if they are exceptional. A complete description of all tests series in-

cluding min/max values, standard deviation, and 90% confidence intervals [21] can be found in

the appendix. Below we present the results and then discuss them in section 4.5.

4.1 Results for ACOOD

The tests for ACOOD (Table 2) have been executed on a SUN SPARCServer10/51 under SUN-

OS 4.1.3. ACOOD scales well, i.e. the CPU-time is almost constant and independent of the

rulebase size. Primitive event detection in ACOOD is fast since event parameters are not

passed to conditions and actions. Composite event detection is fast because an array technique

is used which is not powerful enough to detect events as in ED10 and ED11, but is efficient for

the detectable ones. Furthermore, therecent event consumption is used that is not sensitive to

the event history size. Rule execution is efficient because rules are indexed by events.

factor
rulebase size

empty small medium large

#events 0 50 250 500

#rules 0 50 250 500

of component event occurrences 0 25 50 100

Table 1: Parameter Values for Different Rulebase Sizes

www.manaraa.com

12

4.2 Results for Ode

Ode has been tested on a SUN-SparcServer 4/690 under SUNOS 4.1.3. For many tests, Ode

was the fastest system (Table 3); it also scales well for growing rulebases.

An Ode trigger must be activated or it will never fire. If the corresponding event occurs, the

event mask is evaluated, and if it evaluates to true then the trigger is fired. Given that Ode iden-

tifies both complex and primitive events using the same extended finite state machine mecha-

nism [23], it takes exactly the same amount of time to detect that an event of interest has

occured whether the event is simple or complex unless masks (conditions) must be evaluated.

If a mask involves an expensive computation or if several masks must be evaluated4, identify-

ing a composite event will take proportionately more time. However, in the experiments, the

masks were simple enough that identifying the occurence of either a primitive or a complex

event of interest to a trigger activation took roughly the same amount of time.

Initially, we considered the event mask as the analogon to conditions in ECA-rules, and

consequently specified them in such a way that they always evaluated to false for event detec-

tion tests. However, trigger activations are not deleted if this mask evaluates to false because

they have never fired (and never will fire). Thus, the number of trigger activations in the sys-

tem grows over time, and each activation must be alerted when an event is posted to its corre-

sponding object. This is the reason for the increase in the measured times (e.g., for ED-08), and

also for RM-01 being slower than RE-01.

The values for some tests also prove that argument: for instance, execution times for ED-08

in the large rulebase start with 410 ms and in the final tests end up with 1630 ms. In this case,

4. If a composite event involves several masks, more than one mask may need to be evaluated in response to a sin-
gle basic event occurrence.

Rulebase Size

Test empty small medium large

ED 2 244 246 261 261

ED 6 417 423 436 450

ED 7 151 144 145 156

ED 8 1015 1037 1048 1038

RM 1 231 240 248 249

RM 2 53 53 56 58

RE 1 259 260 261 252

RE 4 415 422 426 430

Table 2: BEAST Results for ACOOD

www.manaraa.com

13

the standard deviation is 297. Alternatively, if the event mask always evaluates to true, ED-08

has an average execution time of 429 ms and a standard deviation of 49. The same effect can be

observed for other tests as well.

4.3 Results for REACH

REACH has been tested on a SUN-SPARC 10/512 under Solaris 2.4. The results in Table 4

show two outstanding negative results for the tests ED3 and ED7 which contain the detection

of commit events. Since Open OODB flushes the whole buffer during commit — even for

read-only transactions — REACH's performance is negatively impacted by the underlying

platform. REACH also updates the event history during commit; this update deteriorates per-

formance for larger rulebases. Thus, the platform and commit processing must be improved.

Most other results are quite encouraging because REACH uses event detectors which are

specialized for exactly one event type. Additionally Open OODB's compiler was modified to

wrap each method so that each invocation is considered as a potential event independently

whether the receiver object is persistent or transient. REACH is able to pass all arguments of a

method call to the condition and action of a rule. The overhead for this flexibility can be ne-

glected for method events (ED2), sequence and conjunction events (ED6, ED10, ED11) and

firing the rules in the tests RE1 - RE4 for all rulebase sizes.

Rulebase Size

Test empty small medium large

ED 2 33 32 29 33

ED 3 221 230 223 234

ED 6 174 189 201 249

ED 7 158 181 206 222

ED 8 509 627 750 975

ED 9 269 256 275 276

ED 10 196 203 208 263

ED 11 831 875 951 985

RM 1 99 108 105 105

RE 1 32 33 37 43

RE 2 48 42 42 46

RE 3 55 58 64 66

RE 4 866 882 895 917

Table 3: BEAST Results for Ode

www.manaraa.com

14

Detecting the repeating events in ED8 and ED9 is slower. In this case, REACH aggregates

the methods' arguments into the parameters of the composite event, and therefore performance

deteriorates.

4.4 Results for SAMOS

SAMOS has been tested on a SUN-SparcServer 4/690 under SUNOS 4.1.3. For some tests,

SAMOS (Table 5) is approximately ten times slower than Ode, while others are comparable.

The major reasons for the high execution times in SAMOS are the complexity of the system,

the additional functionality it has, and the way event detection is implemented.

SAMOS scales quite well for growing rulebases as far as primitive event detection and rule

execution is concerned. This is due to indexing and clustering event descriptions and rule in-

formation. SAMOS scales worse for composite event detection, since (1) lots of objects form-

ing the Petri Net used for composite event detection are stored on disk, and (2) no clustering is

applied to those objects.

Furthermore, SAMOS (i.e., its composite event detector) is sensitive to the number of exist-

ing component event occurrences. In ED-11 for the large rulebase, e.g., 100 component events

are raised before the tests actually start. These events are stored persistently and are considered

for event composition during each test ED-11. Without these (useless) component events, the

average execution time of ED-11 is 2023 ms for the large rulebase.

Rulebase Size

Test empty small medium large

ED 2 105 100 55 331

ED 3 11632 282732 805328 4180290

ED 6 147 144 150 710

ED 7 12076 3894042 1946300 11526000

ED 8 5004 6605 6608 7717

ED 9 3231 3225 2891 3726

ED 10 183 185 202 890

ED 11 1616 1588 1715 1747

RE 1 62 63 58 239

RE 2 34 35 51 229

RE 3 60 61 60 325

RE 4 252 245 161 762

Table 4: BEAST Results for REACH

www.manaraa.com

15

4.5 Discussion of Results

We consider it an achievement that several object-oriented ADBMS-prototypes are now avail-

able. As the tests show, they perform some of their tasks in a timely manner (e.g., action execu-

tion does not seem to cause major performance problems).

Now, we will generalize the performance results. We are thereby primarily considering run-

time performance while neglecting design decisions related to functionality or compile time

performance. It is apparent that the four systems cannot be directly compared in such a way

that the “fastest” system is determined, since different platforms have been used (only Ode and

SAMOS have been executed on the same machine). However, we feel that a comparison is jus-

tified when the difference between two systems is (say) a factor of 10. Furthermore, it is sound

to compare the tested systems with respect to the following questions:

• how well do they scale for growing rulebases?

• what is the relationship between the various tests (i.e., is composite event detection much

more expensive than primitive event detection) for one system.

Trade-offs. The first conclusion to be drawn from the test results is the trade-off between func-

tionality and performance. ACOOD and Ode offer less functionality than SAMOS and

REACH in that they do not support event parameters being passed to conditions and actions.

Primitive event detection and event composition are therefore potentially faster in ACOOD and

Rulebase Size

Test empty small medium large

ED 2 445 473 527 522

ED 3 472 525 545 570

ED 6 2059 3681 5165 8124

ED 7 2236 2363 2463 2473

ED 8 6269 7015 7433 7098

ED 9 5549 6592 7347 8378

ED 10 1816 3514 5046 7890

ED 11 1861 4272 6440 10536

RM 1 425 473 501 505

RM 2 43 41 42 45

RE 1 460 499 542 542

RE 2 448 495 527 539

RE 3 419 459 473 505

RE 4 911 967 1025 987

Table 5: BEAST results for SAMOS

www.manaraa.com

16

Ode. Second, ACOOD does not support explicit event restrictions (such assame transac-

tion), which are supported in REACH and SAMOS. Upon event composition, ACOOD is thus

potentially faster since it can takeany event occurrence for composition, but does not need to

select those event occurrences that fulfill the event restriction.

One the other hand, event parameters and event restrictions are considered useful con-

structs. If they are thus desired, then one has either to build them into the language (as is done

in Ode for thesame object restriction), or to accept the runtime cost.

Another trade-off is that between compile-time and runtime performance. For instance, if

class-internal rules are supported, compile-time performance is worse, but runtime perfor-

mance is improved.

Event and Rule Management.Those systems that store event descriptions and occurrences

as well as rule definitions as objects in the rulebase are likely to suffer a performance penalty

(this was previously hypothesized in [2]). Representing events, rules, or the internal states of

event detectors as separate objects implies additional read or write accesses to the rule base and

event history, which are not necessary when all this information is included in class definitions.

In the latter case, rule and event definitions are already available with the class definition. This

is one of the reasons for Ode being the fastest system for many tests, since while it stores the

internal state of the extended finite state machines (28 bytes per trigger activation) in the data-

base, it does not store events or rules there.

Event Detection.The first observation with respect to event detection refers to whether events

are detected globally or locally to objects. In between these extremes, several event detectors

exist which are responsible for certain sets of events. In the first approach, one central event de-

tector is notified about all sorts of events from other ADBMS components (in ACOOD and

SAMOS). The event detector then needs to retrieve the event description from the rulebase and

to determine event parameters (in SAMOS). Furthermore, in SAMOS the composite event de-

tector has to reconstruct the Petri Net parts it needs, which in turn are represented as objects

and spread all over the database. In the local approach, most of the information is already avail-

able, since it is kept local to objects (in Ode) or to the various dedicated event detectors (in

REACH). This explains why Ode (1) detects composite events faster and (2) scales well for

growing rulebases. It also explains why for some tests the performance of REACH lies in be-

tween those of Ode and SAMOS.

Event History Management.For some tests, the number of initially raised component events

is a factor, i.e., the event history is not empty when the tests start. Especially if event parame-

ters are required for subsequent rule execution, then the event history must be maintained, ei-

www.manaraa.com

17

ther explicitly or implicitly in the state of the event detector(s). Two observations are apparent

with respect to event history management:

• The recent consumption mode seems to be more efficient, since upon event composition

the entire event history might have to be scanned inchronicle consumption mode. This is

the reason why ACOOD (which uses therecent mode) — unlike SAMOS — is not sensi-

ble to the size of the event history.

• If the chronicle consumption mode is used, then garbage collection of old event occur-

rences is a crucial task. For instance, in ED11, the initially raised component event occur-

rences are of no use, since asame transaction restriction is specified. Garbage collection

would discard these occurrences even before the tests actually start and thus would make

SAMOS five times faster for some tests (see the appendix).

Condition Evaluation. The current prototypes do not perform any kind of optimization or

pre-analysis of conditions. A very basic approach might be to perform pre-analysis, during

which constant expressions would be detected (none of the systems recognized the constant,

false condition or mask in event detection tests). Condition evaluation optimization might also

be improved, since none of the systems recognized that the same condition was used in each of

the four associated rules for RE-04. Thus, optimizingsets of conditions together or incremen-

tally might further improve performance of rule execution (note that this has already been in-

vestigated for relational and production-rule systems [e.g., 13]).

Observations on Architectural Styles.It is not generally justified based on our results to con-

clude that integrated architectures have better performance than layered architectures. Actual-

ly, even integrated architectures use some kind of lower-level platform (be it a toolkit like Open

OODB), and the performance of this platform is also decisive in addition to the chosen imple-

mentation techniques. Nevertheless, in integrated architectures there is a higher degree of free-

dom when choosing techniques (e.g., for event detection) — for instance, some of the

techniques used in Ode are not applicable in a layered system.

5 Conclusion and Future Work

Four ADBMSs have been benchmarked. This benchmarking was not possible when the work

on BEAST started in 1994, since far fewer systems were operational back then. The systems

we have tested are quite powerful and efficient for certain tasks.

Furthermore, the tests have also helped stabilize each of the systems, since implementing a

pre-defined benchmark determined several bugs and limitations, and also helped understanding

the performance of ADBMSs. Concretely, we learned about the performance characteristics of

www.manaraa.com

18

event detection techniques (using a centralized, single event detector vs. usage of many event

detectors dedicated to objects or event descriptions) as well as the performance of composite

event detectors. We also better understand in which cases factors such as the rulebase size or

the size of the event history influence performance. The remaining performance problems can

be subdivided into two classes:

• trade-offs between performance and functionality in some aspects, where either functional-

ity must be reduced or its cost be accepted (e.g., class-independent rules),

• open problems still to be addressed (e.g., event history garbage collection and condition

optimization)

As for future work, it would be interesting to test further systems (e.g., Sentinel [9], NAOS

[10], and Monet [22]) as soon as they are available. Furthermore, ADBMS-performance evalu-

ation in multi-user mode is a challenging topic.

Acknowledgements
The work of the three European authors has been supported in part by ACT-NET. ACT-NET is

a HCM network funded by the Comission of the European Union; the Swiss part in ACT-NET

has been funded by the “Bundesamt für Bildung und Wissenschaft”, BBW.

References
1. R. Agrawal, N. H. Gehani:Rationale for the Design of Persistence and Query Processing

Facilities in the Database Programming Language O++. Proc. 2nd DBPL, Salishan, 1989.

2. E. Anwar, L. Maugis, S. Chakravarthy:A New Perspective on Rule Support for Object-
Oriented Databases. Proc. SIGMOD, Washington, DC, May 1993.

3. M. Berndtsson:Reactive Object-Oriented Databases and CIM. Proc. 5th Intl. Conf. on
Database and Expert Systems Applications, Athens, Greece, September 1994.

4. A. Biliris, E. Panagos:Transactions in the Client-Server EOS Object Store. Proc. 11th

ICDE, Taipei, Taiwan, March 1995.

5. H. Branding, A. Buchmann, T. Kudrass, J. Zimmermann:Rules in an Open System: The
REACH Rule System. In N.W. Paton, H.W. Williams (eds): Proc. 1st Intl. Workshop on
Rules in Database Systems, Edinburgh, UK, September 1993.

6. A.P. Buchmann: Active Object Systems. In A. Dogac, T.M. Ozsu, A. Biliris, T. Sellis
(eds): Advances in Object-Oriented Database Systems. Computer and System Sciences
Vol 130, Springer, 1994.

7. A.P. Buchmann, J. Zimmermann, J.A. Blakeley, D.L. Wells:REACH: A Tightly Integrated
Active OODBMS. Proc. 11th ICDE, Taipei, Taiwan, March 1995.

8. M.J. Carey, D.J. DeWitt, J.F. Naughton:The 007 Benchmark. Proc. SIGMOD,
Washington, DC, May 1993.

9. S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim:Composite Events for Active
Databases: Semantics, Contexts, and Detection. Proc. 20th VLDB, Chile, Sept. 1994.

www.manaraa.com

19

10. C. Collet, T. Coupaye, T. Svensen:NAOS: Efficient and Modular Reactive Capabilities in
an Object-Oriented Database System. Proc. 20th VLDB, Santiago, Chile, Sept. 1994.

11. U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ladin, D. McCarthy,
A. Rosenthal, S. Sarin:The HiPAC Project: Combining Active Databases and Timing
Constraints. SIGMOD Record 17:1, March 1988.

12. J. Eriksson:CEDE: Composite Event Detector in an Active Object-Oriented Database.
Master’s thesis, Department of Computer Science, University of Skövde, 1993.

13. F. Fabret, M. Regnier, E. Simon:An Adaptive Algorithm for Incremental Evaluation of
Production Rules in Databases. Proc. 19th VLDB, Dublin, Ireland, August 1993.

14. S. Gatziu, K.R. Dittrich:SAMOS: An Active, Object-Oriented Database System. Bulletin
of the IEEE-TC on Data Engineering 15:1-4, 1992.

15. S. Gatziu, K.R. Dittrich: Detecting Composite Events in an Active Database Systems
Using Petri Nets. Proc. 4th Intl. Workshop on Research Issues in Data Engineering: Active
Database Systems, Houston, February 1994.

16. A. Geppert, S. Gatziu, K.R. Dittrich:A Designer's Benchmark for Active Database
Management Systems: 007 Meets the Beast. Proc. 2nd Intl. Workshop on Rules in
Database Systems, Athens, Greece, September 1995.

17. A. Geppert, S. Gatziu, K.R. Dittrich, H. Fitschi, A. Vaduva:Architecture and
Implementation of an Active Object-Oriented Database Management System: the Layered
Approach. Technical Report 95.29, Institut für Informatik, Universität Zürich, Nov. 1995.

18. J. Gray (ed): The Benchmark Handbook for Database and Transaction Processing
Systems. 2nd ed., Morgan Kaufmann Publishers, 1993.

19. N.H. Gehani, H.V. Jagadish, O. Shmueli:Composite Event Specification in Active
Databases: Model & Implementation. Proc. 18th VLDB, Vancouver, August 1992.

20. H.V. Jagadish, D. Lieuwen, R. Rastogi, A. Silberschatz, S. Sudarshan:Dali: A High
Performance Main Memory Storage Manager. Proc. 20th VLDB, Santiago, Sept. 1994.

21. R. Jain:The Art of Computer Systems Performance Analysis. Techniques for Experimental
Design, Measurement, Simulation, and Modeling. John Wiley & Sons, 1991.

22. M.L. Kersten: An Active Component for a Parallel Database Kernel. Proc. 2nd Intl.
Workshop on Rules in Database Systems, Athens, Greece, September 1995.

23. D. F. Lieuwen, N. Gehani, R. Arlein:The Ode Active Database: Trigger Semantics and
Implementation. Accepted for 12th ICDE, New Orleans, March 1996.

24. Oracle Corporation:Oracle7 Server: SQL Reference. Release 7.2, April 1995.

25. Sybase Inc.:SYBASE - Data Server. Berkeley, CA, 1988.

26. D. L. Wells, J. A. Blakeley, C. W. Thompson:Architecture of an Open Object-Oriented
Database Management System. IEEE Computer 25:10, October 1992.

27. J. Widom: Research Issues in Active Database Systems. SIGMOD Record 23:3,
September 1994.

28. J. Widom, S. Ceri (eds):Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers, 1995.

29. J. Zimmermann, A. Buchmann:Benchmarking Active Database Systems: A Requirements
Analysis. OOPSLA'95 Workshop on Object Database Behavior, Benchmarks, and
Performance; Austin, Texas, 1995.

www.manaraa.com

20

Appendix: Results of Active Database Management
Systems for the BEAST Benchmark

This appendix contains detailed information about the performance measurements of ACOOD,
Ode, REACH, and SAMOS using the BEAST benchmark.

A Results for ACOOD

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 244 170 310 42 229 259

ED6 417 360 530 45 401 432

ED7 151 110 200 28 141 160

ED8 1015 930 1080 52 996 1034

RM1 231 170 300 35 219 243

RM2 53 30 80 16 48 59

RE1 259 220 330 33 247 270

RE4 415 370 480 38 402 428

Table 6: BEAST Results for Acood (empty rulebase)

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 246 160 350 46 231 260

ED6 423 330 550 53 406 439

ED7 144 100 190 25 137 152

ED8 1037 910 1270 87 1012 1062

RM1 240 150 310 41 228 252

RM2 53 30 100 16 48 58

RE1 260 200 360 40 248 272

RE4 422 350 490 42 409 435

Table 7: BEAST Results for Acood (small rulebase)

www.manaraa.com

21

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 261 190 320 35 252 270

ED6 436 320 560 58 421 451

ED7 145 70 200 30 137 153

ED8 1048 930 1180 70 1030 1067

RM1 248 190 340 37 238 257

RM2 56 30 90 15 52 59

RE1 261 180 350 42 250 272

RE4 426 360 490 39 416 437

Table 8: BEAST Results for Acood (medium rulebase)

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 261 180 330 41 250 273

ED6 450 350 540 56 435 465

ED7 156 110 200 29 148 164

ED8 1038 940 1180 79 1017 1059

RM1 249 170 320 38 239 259

RM2 58 30 80 15 54 62

RE1 252 180 350 47 240 265

RE4 430 350 500 41 419 440

Table 9: BEAST Results for Acood (large rulebase)

www.manaraa.com

22

B Results for Ode

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 33 10 50 12 29 36

ED3 221 150 300 51 207 236

ED6 174 90 250 51 159 190

ED7 158 60 270 67 138 178

ED8 509 80 960 251 434 583

ED9 269 90 440 113 236 302

ED10 196 100 310 74 175 218

ED11 831 440 1250 301 739 923

RM1 99 30 160 38 88 110

RE1 32 10 60 15 28 36

RE2 48 10 100 19 43 53

RE3 55 20 90 15 51 59

RE4 866 810 1080 55 851 881

Table 10: BEAST Results for Ode (empty rulebase)

www.manaraa.com

23

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 32 10 70 13 29 36

ED3 230 150 340 49 216 243

ED6 189 110 260 48 175 203

ED7 181 100 240 44 168 193

ED8 627 300 920 199 567 688

ED9 256 80 430 109 224 289

ED10 203 70 350 85 180 226

ED11 875 410 1410 328 780 969

RM1 108 20 200 52 95 122

RE1 33 10 60 13 30 37

RE2 42 10 80 15 38 46

RE3 58 20 100 18 54 63

RE4 882 830 950 35 873 892

Table 11: BEAST Results for Ode (small rulebase)

www.manaraa.com

24

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 29 10 60 14 25 33

ED3 223 120 330 72 203 243

ED6 201 100 310 61 183 218

ED7 206 100 310 62 188 223

ED8 750 240 1200 295 673 828

ED9 275 60 490 131 239 310

ED10 208 80 330 80 187 229

ED11 951 360 1490 381 844 1058

RM1 105 30 180 44 93 117

RE1 37 10 80 17 32 41

RE2 42 0 80 18 37 47

RE3 64 40 90 14 60 68

RE4 895 810 1210 90 871 919

Table 12: BEAST Results for Ode (medium rulebase)

www.manaraa.com

25

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 33 20 50 12 29 36

ED3 234 120 320 60 216 251

ED6 249 120 440 80 225 272

ED7 222 100 330 70 198 246

ED8 975 410 1630 297 887 1063

ED9 276 50 540 130 238 315

ED10 263 90 400 88 235 290

ED11 985 450 1650 358 878 1091

RM1 105 20 190 50 91 120

RE1 43 10 80 18 38 48

RE2 46 20 70 14 42 50

RE3 66 30 120 23 59 73

RE4 917 840 1200 105 886 949

Table 13: BEAST Results for Ode (large rulebase)

www.manaraa.com

26

Remarks: in this test series all triggers ED02-ED11 fire, i.e., their event mask evaluates to true.

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 44 10 70 14 41 48

ED3 253 170 360 48 241 266

ED6 83 50 110 16 79 87

ED7 164 90 250 48 151 176

ED8 266 210 330 29 259 274

ED9 45 20 80 16 41 49

ED10 101 50 150 22 95 107

ED11 328 240 430 45 316 340

RM1 33 20 60 10 30 36

RE1 39 10 70 16 35 43

RE2 41 20 80 16 37 45

RE3 67 20 120 19 62 72

RE4 878 800 1180 70 859 897

Table 14: BEAST Results for Ode (medium rulebase)

www.manaraa.com

27

Remarks: in this test series all triggers ED02-ED11 fire, i.e., their event mask evaluates to true.

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 43 10 70 17 38 47

ED3 244 150 340 54 230 258

ED6 120 80 170 18 115 124

ED7 175 100 240 42 163 186

ED8 975 410 1630 297 887 1063

ED9 276 50 540 130 238 315

ED10 263 90 400 88 235 290

ED11 985 450 1650 358 878 1091

RM1 105 20 190 50 91 120

RE1 43 10 80 18 38 48

RE2 46 20 70 14 42 50

RE3 68 30 100 20 63 73

RE4 877 820 1010 42 866 888

Table 15: BEAST Results for Ode (large rulebase)

www.manaraa.com

28

C Results for Reach

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 105 102 113 3 104 106

ED3 11632 11632 19095 6790 8278 14986

ED6 147 141 154 4 146 149

ED7 12076 3995 16921 8396 8396 15756

ED8 5004 3516 6512 1341 4119 5889

ED9 3231 2119 4828 1145 2558 3904

ED10 183 177 195 5 182 185

ED11 1616 189 2059 587 1426 1806

RE1 62 61 66 1 62 63

RE2 34 32 36 1 33 34

RE3 60 57 68 3 59 60

RE4 252 246 263 5 251 254

Table 16: BEAST Results for REACH (empty rulebase)

www.manaraa.com

29

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 100 97 103 2 99 100

ED3 282732 258149 320789 23463 267244 298219

ED6 144 140 151 3 143 144

ED7 3894042

ED8 6605 3895 9249 2165 5607 7603

ED9 3225 1336 4599 1477 2357 4093

ED10 185 180 200 4 184 186

ED11 1588 347 2042 593 1315 1862

RE1 63 59 69 3 62 65

RE2 35 32 44 4 33 37

RE3 61 55 75 6 58 63

RE4 245 237 256 6 242 248

Table 17: BEAST Results for REACH (small rulebase)

www.manaraa.com

30

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 55 54 58 1 55 56

ED3 805328 759079 856798 42767 772547 838109

ED6 150 143 154 3 149 150

ED7 1946300 1945690 1946900 856 1945150 1947440

ED8 6608 6087 7002 385 6313 6904

ED9 2891 2244 4167 791 2468 3314

ED10 202 197 206 2 201 203

ED11 1715 1134 1816 174 1667 1763

RE1 58 56 65 2 57 58

RE2 51 50 54 1 50 51

RE3 60 59 66 1 60 60

RE4 161 153 210 10 158 163

Table 18: BEAST Results for REACH (medium rulebase)

www.manaraa.com

31

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 331 324 347 7 330 333

ED3 4180290

ED6 710 682 802 25 704 717

ED7 11526000

ED8 7717 7195 8239 739 6732 8702

ED9 3726 3669 3783 81 3618 3833

ED10 890 866 1065 40 879 900

ED11 1747 1534 2059 194 1668 1827

RE1 239 236 251 3 239 240

RE2 229 224 237 3 228 230

RE3 325 317 343 6 324 327

RE4 762 734 878 38 751 772

Table 19: BEAST Results for REACH (large rulebase)

www.manaraa.com

32

D Results for Samos

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 445 390 500 30 436 455

ED3 472 390 570 44 458 486

ED6 2059 1980 2250 72 2036 2083

ED7 2236 2100 2380 85 2209 2262

ED8 6269 6020 6460 130 6224 6314

ED9 5549 5360 5720 106 5515 5584

ED10 1816 1740 1920 49 1800 1832

ED11 1861 1750 1960 61 1842 1879

RM1 425 370 490 30 416 434

RM2 43 30 60 10 40 45

RE1 460 430 510 20 454 466

RE2 448 410 530 32 438 458

RE3 419 370 490 39 407 431

RE4 911 850 1000 42 897 924

Table 20: BEAST Results for Samos (empty rulebase)

www.manaraa.com

33

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 473 440 540 27 464 481

ED3 525 460 590 35 515 536

ED6 3681 3500 3890 110 3644 3718

ED7 2363 2270 2510 74 2339 2387

ED8 7015 6730 7270 186 6955 7075

ED9 6592 6350 6770 143 6546 6639

ED10 3514 3370 3820 140 3468 3559

ED11 4272 4080 4600 157 4223 4322

RM1 473 430 540 29 464 482

RM2 41 30 60 9 38 44

RE1 499 460 580 28 491 508

RE2 495 440 550 28 487 504

RE3 459 400 500 32 450 469

RE4 967 920 1020 35 956 978

Table 21: BEAST Results for Samos (small rulebase)

www.manaraa.com

34

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 527 460 620 42 515 538

ED3 545 480 600 36 535 555

ED6 5165 4940 5490 164 5115 5215

ED7 2463 2330 2660 84 2440 2486

ED8 7433 7210 7760 142 7391 7476

ED9 7347 7100 7730 188 7289 7404

ED10 5046 4720 5370 156 5001 5091

ED11 6440 6200 6870 201 6381 6499

RM1 501 450 600 36 491 511

RM2 42 30 60 7 40 44

RE1 542 480 610 34 533 551

RE2 527 460 590 36 517 536

RE3 473 420 540 30 465 481

RE4 1025 970 1090 35 1015 1035

Table 22: BEAST Results for Samos (medium rulebase)

www.manaraa.com

35

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 522 460 600 38 512 532

ED3 570 520 630 32 561 579

ED6 8124 7740 8590 234 8053 8196

ED7 2473 2260 2650 96 2447 2499

ED8 7098 6800 7380 170 7049 7147

ED9 8378 8100 8660 173 8327 8430

ED10 7890 7630 8180 143 7848 7931

ED11 10536 10310 10920 173 10484 10589

RM1 505 470 560 28 498 513

RM2 45 30 60 7 43 47

RE1 542 470 590 28 534 549

RE2 539 480 610 37 529 549

RE3 505 420 580 32 496 514

RE4 987 920 1040 36 976 997

Table 23: BEAST Results for Samos (large rulebase)

www.manaraa.com

36

Remarks: the composite event detector is not initialized with (useless) comonent events before
the test series started.

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 485 420 560 33 476 494

ED3 519 480 590 28 511 526

ED6 2142 2030 2300 72 2123 2162

ED7 2310 2170 2470 73 2290 2330

ED8 6487 6300 6840 146 6444 6531

ED9 5956 5680 6320 182 5905 6007

ED10 2014 1900 2270 92 1989 2040

ED11 2007 1910 2190 78 1986 2029

RM1 470 420 520 26 463 477

RM2 48 40 60 6 46 50

RE1 500 460 570 33 491 509

RE2 523 470 590 30 515 531

RE3 462 410 560 34 452 471

RE4 975 910 1050 34 965 984

Table 24: BEAST Results for Samos (small rulebase)

www.manaraa.com

37

Remarks: the composite event detector is not initialized with (useless) comonent events before
the test series started.

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 506 460 560 25 499 513

ED3 540 500 620 31 531 549

ED6 2206 2090 2460 90 2182 2230

ED7 2367 2250 2550 86 2344 2390

ED8 6548 6420 6760 93 6521 6575

ED9 6018 5770 6370 162 5973 6064

ED10 2010 1890 2360 100 1982 2037

ED11 2041 1920 2180 77 2021 2062

RM1 497 440 570 33 488 506

RM2 42 30 60 6 41 44

RE1 531 500 590 27 524 539

RE2 513 450 570 30 505 521

RE3 473 420 540 35 464 482

RE4 999 940 1070 40 988 1010

Table 25: BEAST Results for Samos (medium rulebase)

www.manaraa.com

38

Remarks: the composite event detector is not initialized with (useless) comonent events before
the test series started.

Test Statistic measures

mean min max st. dev. 90% conf. interval

ED2 502 460 600 36 492 512

ED3 569 510 650 36 559 579

ED6 2105 1990 2270 80 2082 2128

ED7 2246 2130 2490 91 2221 2270

ED8 6979 6710 7590 227 6911 7046

ED9 5893 5720 6130 122 5857 5929

ED10 1986 1870 2150 67 1968 2004

ED11 2002 1920 2230 72 1982 2023

RM1 510 460 580 34 500 520

RM2 42 30 70 9 40 44

RE1 536 490 590 27 529 544

RE2 533 490 610 32 524 541

RE3 491 420 560 37 480 502

RE4 988 920 1090 38 978 998

Table 26: BEAST Results for Samos (large rulebase)

